A Nominal Axiomatization of the Lambda Calculus

نویسندگان

  • Murdoch James Gabbay
  • Aad Mathijssen
چکیده

The lambda calculus is fundamental in computer science. It resists an algebraic treatment because of capture-avoidance sideconditions. Nominal algebra is a logic of equality designed for specifications involving binding. We axiomatize the lambda calculus using nominal algebra, demonstrate how proofs with these axioms reflect the informal arguments on syntax and we prove the axioms to be sound and complete. We consider both non-extensional and extensional versions (alpha-beta and alpha-beta-eta equivalence). This connects the nominal approach to names and binding with the view of variables as a syntactic convenience for describing functions. The axiomatization is finite, close to informal practice and it fits into a context of other research such as nominal rewriting and nominal sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nominal Reasoning Techniques in Coq ( Extended Abstract ) Brian

We explore an axiomatized nominal approach to variable binding in Coq, using an untyped lambda-calculus as our test case. In our nominal approach, alpha-equality of lambda terms coincides with Coq’s builtin equality. Our axiomatization includes a nominal induction principle and functions for calculating free variables and substitution. These axioms are collected in a module signature and proved...

متن کامل

Nominal Reasoning Techniques in Coq

We explore an axiomatized nominal approach to variable binding in Coq, using an untyped lambda-calculus as our test case. In our nominal approach, alpha-equality of lambda terms coincides with Coq’s builtin equality. Our axiomatization includes a nominal induction principle and functions for calculating free variables and substitution. These axioms are collected in a module signature and proved...

متن کامل

Nominal Reasoning Techniques in Coq ( Extended Abstract ) Brian Aydemir

We explore an axiomatized nominal approach to variable binding in Coq, using an untyped lambda-calculus as our test case. In our nominal approach, alpha-equality of lambda terms coincides with Coq’s builtin equality. Our axiomatization includes a nominal induction principle and functions for calculating free variables and substitution. These axioms are collected in a module signature and proved...

متن کامل

A Finite Equational Axiomatization of the Functional Algebras for the Lambda Calculus

A lambda theory satisfies an equation between contexts, where a context is a *-term with some ``holes'' in it, if all the instances of the equation fall within the lambda theory. In the main result of this paper it is shown that the equations (between contexts) valid in every lambda theory have an explicit finite equational axiomatization. The variety of algebras determined by the above equatio...

متن کامل

A Review of Three Techniques for Formally Representing Variable Binding

This paper compares three models for formal reasoning about programming languages with binding. Higher order abstract syntax (hoas) uses meta-level binding to represent object-level binding [PE88]. Nominal Logic couples a concrete representation of bound variables with a formal apparatus for safely manipulating bound variables [Pit03]. The locally named binding representation places bound and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Log. Comput.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010